
Object Oriented Metrics: Revisited
Aman Jatain

Assistant Professor, Amity University
Gurgaon, India.

Jyoti Kataria
Assistant Professor, Amity University

Gurgaon, India.

Abstract - Software Metrics are developed and used by various
Organizations for estimating and assuring software code
quality, size estimation, complexity, maintenance and operation
while generating software application development and software
design. In the field of software’s, accuracy is a major concern
and every individual would like to get as much accuracy as they
could. Accomplishment of system is based on the result of every
distinct stage of development with proper evaluating techniques.
Metrics are measures of product, process and people who are
involved in the area of development process and acts as quality
pointers. In this paper comparative study of object oriented
software metrics is provided with the help of components which
are an essential as well as the backbone to the functionalities of
the software metrics.

Keywords – Class, Component, Depth of inheritance tree,
Metrics, Object Oriented system.

I. INTRODUCTION

The quality of software systems became a significant issue in
the continuation of software business i.e. the huge amount of
software used in the markets and their role in handling
precise and risky tasks. Engineers have been improving the
software quality with their design process and proposing new
methodologies for all software development steps, from
requirements specification to testing. The size and complexity
of software continue to grow throughout the development life
cycle of a software system which leads to an increase in the
effort and cost of software maintenance. Even after the
development of software system, the software system needs
to evolve continually to satisfy the user requirements by
addition of new features, as per the business needs,
improving the quality of the software systems, etc. Overall
success of the software begins with properly understanding
the requirements, planning and scheduling of the project,
development of the process, expertise people’s contribution,
SQA activities with precise set of metrics, documentation and
toolset.

Metrics are measures of product under development,
activities, people involved, gives a vision on their quality to
make whole process successful. Numerous metrics are
defined and reformed in software industries to address
problems with different levels of complexity as well as for
measuring various properties of the software systems. Also
software metrics used provides information about the

resources, processes and products evolve during the software
development. Software metrics provide factual and
quantitative information. From the practical point of view,
within an organization the metrics tools defined by engineers
and the managers are system based. A large amount of
research has been done over the past decades on the concept
that how to measure the various aspects of software use and
development, starting from the production of coding by
programmers to the satisfaction of the end customers with
using the software systems to their business.

Rest of the paper is structured as follows. Section 2 discusses
about relevant research work in the subject. Section 3 gives a
brief explanation of metrics categorization along with a table
containing comparative study about metrics. Concluding
remarks are given in Section 4.

II. RELATED WORK

Abreu et al. provides a classification structure for the
TAPROOT. This structure was defined with two different
vectors, which are granularity and category. Six different
categories of Object-Oriented metrics are defined, they are
complexity metrics, design metrics, quality metrics, size
metrics, reuse metrics and productivity metrics and also
proposed three different levels of granularity that are
methods, software and class. M. Alshayeb et al. has given
two iterative techniques for the pragmatic study of object
oriented metrics. It includes one short-cycled agile method
and other long-cycled structure evolution process. In the
short-cycled agile process, the outcomes observed were that
the line of code and the design efforts were added, deleted
and changed with the prediction of object oriented metrics
whereas the same points were not predicted by the long-
cycled structure process.

R.D.Neal et al. gives the study for the validation of object-
oriented software metrics and then found that a few of the
proposed metrics could not be considered as the valid
measure. R.Harrison et al. suggested a statistical model which
is obtained from logistic regression from identifying
threshold values for Chidamber and Kemerer metrics. H.Lieu
et al. has given a perspective that the quality of software also
plays a significant role in terms of financial and safety
aspects. They also bridged the gap between design and

Aman Jatain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1180-1183

www.ijcsit.com 1180

quality measurement of the metrics. M.Subramanyan et al.
proposed some metric suites and recommended that for the
developers it is very important to recognize various design
aspects of the software and also different methods to enhance
the quality of the software.

Racheal Harrison et al. discussed about the six properties for
the object oriented design metrics and also measured the
object-oriented features like polymorphism, inheritance,
coupling and encapsulation. C.Shyam et al. suggests some
software metrics through which we can calculate the quality
of modularization of the object oriented software. Y.Zhou et
al. considered the fault severity using the machine learning
methods and using the experimental assessment of fault
proneness which predict the capability of the object oriented
design metrics.

J.Xu et al. have proposed an object-oriented metrics which
describes the fault estimation using empirical analysis and
also uses the CK metrics to apprise the number of faults in a
particular program.

C.Neelamegan et al. surveyed four object oriented metrics
and mostly focused on the measurements that are totally
applied on the various design and class characteristics.
Dr.B.R.Sastry et al. trying to implement the graphics user
interaction with the aid of software metrics and also tried to
the quality and the quantity of the of object oriented software
development cycle.

III. METRICS CATEGORIZATION

Metrics can be categorized into three different components
which are kinds, size and measures. Also two different kinds
of software metrics are process metrics and product metrics.
Process metrics quantify the process which is used to develop
the software and then to evaluate the efficiency of fault
detection. Product metrics quantify the characteristics and
features of the product being developed to determine the
reliability and size. Measures are also divided into two
different types which are direct and indirect measures. Direct
measure are used to measure the line of code, effort, cost,
memory, speed etc. while the indirect measures are used for
complexity, quality, functionality, efficiency, maintainability,
reliability etc. Size oriented metrics can be categorized as
LOC-Lines of Code, KLOC-1000 lines of code etc.

 Component
Components are categorized as the collection of various pre-
programmed tools which are used as the add-on page. There
are also various tools present to measure Java source code.
These tools will measure various different parameters in Java
program. One of the major benefit of the component based
tool is that the user can also select the tool of their own
choice to measure the program according to the requirements.
In this the user can also know more details about the tools

and can find the links from where the tools can be
downloaded. Some tools can also show warning messages
and charts if the program is not structured appropriately or is
not having proper format. All the components would not meet
the user requirement criteria. Some can be used for measuring
the program while some may be used for generating the
report.

A software element is a coherent package of software
implementation that presents published and well-defined
interfaces are reusable. They can be individually developed
and delivered such components together to form an
application. The significant and relevant metrics relevant for
the component quality during the execution of design phase
are:

Component Size Metrics (CSM): CSM should be created on
the concept of total number of sub-components such as use-
cases or classes.

Weighted Methods per Class (WMC): WMC is based on the
number of local methods which are defined in the component.
It is basically related to size complexity.

Depth of Inheritance Tree (DIT): DIT refers to the
maximum depth of the element in the inheritance tree. The
deepness of the element hierarchy is directly proportional to
larger the number of methods it is likely to inherit, which is
making it further complex to predict the behavior of
component.

Number of Children (NOC): NOC represents the number of
immediate sub-components of a particular component. It
actually measures inheritance complexity.

Count of Base Components (CBC): CBC is also based on the
numbers of base components like NOC.

Response set for a class (RFC): RFC is the set of methods
that can be potentially implemented in response to the
received message by the component’s object. It can be stated
as the number of methods in a particular set.

Characteristics of components
Some significant characteristics of software components in
usage perspective are as follows:
 Assumption of architectural embedding
 Presentation of each functionality via definite

“incoming” or “provides” interfaces
 Presentation of parametric dependencies via specific

“outgoing” or “requires” interfaces
 Static dependencies
 Targeting individual component platform
 Collaboration of other components

Aman Jatain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1180-1183

www.ijcsit.com 1181

Requiring per-instance context
In brief, Ian Sommerville tabularizes the primary
characteristics of components as shown below in the tabular
form.

Metrics for Object oriented Designs
We have also provided a comparative study of the object
oriented software metrics. These metrics are:

a) Morris Metrics:
Morris et al. suggested a metrics suite for object oriented
metrics systems, it defines the system in the shape of tree
structure. Morris defined the complexity of the object-
oriented system in the shape of the depth of tree. This depth
of tree evaluates the number of sub nodes of tree, large
number of sub nodes of tree shows more complexity in the
system. Therefore, complexity of an object is equivalent to
total number of sub nodes or depth of tree.

b) Goal Question Metrics (GQM):
GQM approach is developed by V.L.Basili. This approach
was initially defined for the evaluation of defects in various
project sets of NASA Goddard Space Flight Center
environment. He also delivered the set of categorization
which are valuable for the programmers. The objective of the
GQM is to express the significance of templates which covers
purpose and prospective for driving metrics and questions. It
delivers framework comprising three steps:
 i) List most important goals of development or

maintenance part of the project.
 ii) Derive questions from each goal which must be

answered to conclude that whether the results are being
met or not.

 iii) Decide which all parameters must be measured in
proper order to answer all the questions satisfactorily.

Goal (Conceptual Level): A goal is specified for an object,
for different variety of reasons and with respect to different
models of quality with numerous different points of view.
Objects of measurement are processes, products and
resources.
Question (Operational Level): A set of questions are
recognized to characterize the method of achievement for a
particular goal which is going to accomplish using some
specific characterizing model.
Metric (Quantitative Level): A defined set of data is
combined with every single question in order to get a
quantitative answer. This data can be subjective and
objective, if they show dependencies on the objects only
which they can be evaluated and not related to the viewport
from which they might have taken. For example, size of a
program, staff hours spent on a task, number of versions of a
document.

c) Lorenz & Kidd Metrics
Lorenz & Kidd proposed a set of metrics which can be
categorized in four categories that are internal, external,
inheritance and size. Metrics defined for the class intervals
are completely oriented towards the cohesion whereas the
external metrics were utilized to reuse and examine.
Inheritance based metrics are thoroughly concentrated on
those concepts in which procedures are reused through the
class hierarchy method. Size oriented metrics for the object
oriented class can be concentrated on the average value of the
object-oriented software, operations and attributes of an
individual class and the count of the metrics as a whole.

d) Extended Metrics for Object-oriented Software
Engineering:
 W.Li et al. proposed this metrics of the MOOSE (Metrics for
Object-oriented Software engineering) model. They may be
defined as-
i) Message Pass Coupling (MPC): MPC stands for the

number of message which can be replied by the class
operations.

ii) Data Abstraction Coupling (DAC): DAC is used to
evaluate the total number of classes which are combined
to the current class and are also showing data abstraction
coupling.

iii) Number of Methods (NOM): NOM is used to calculate
the number of operations which are local to the class i.e.
individual those class operations who can provide the
number of techniques to measure it.

iv) Size1: Size1 is used to identify the count of line of code.
v) Size2: Size2 is used to compute the total number of

Operations and local attributes defined in the class.
Table 1 provides a comparative study of metrics. These
metrics can help to measure the size, complexity and efforts.

TABLE 1: METRIC COMPARISON
Source

Metrics

Morris

GQM

Lorenz

&
Kidd

EMOOS

DIT Y
LCOM Y
CBO Y
CS Y

NOA Y
NOO Y

SI Y
OS Y
OC Y
NP Y

MPC Y
DAC Y
NOM Y

Aman Jatain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1180-1183

www.ijcsit.com 1182

CONCLUSION AND FUTURE SCOPE
The concepts and features presented in this paper are mostly
conceptual in nature but they also have a robust influence in
software development processes. These metrics can be used
by the software developers in order to develop and check the
quality of the system software. A frame work is created
which helps to pull together the concepts quality metric,
component and their characteristics. Future research is
needed for measuring the quality of the metrics with accurate
measurement on the real word projects and then checking the
quality of metrics for similar and different projects. We can
also check the quality with the view point of the Developers
and the Clients.

APPENDIX

DIT: Depth of inheritance tree
LCOM: Lack of cohesion in methods
CBO: Coupling between objects
CS: Class size
NOA: Number of operation added by some class
NOO: Number of operation overridden by subclass
SI: Specialization Index
OS: Average operation size
OC: Operation complexity
NP: Average number of parameter per operation
MPC: Message pass coupling
DAC: Data abstraction coupling
NOM: Number of methods

REFERENCES

 [1] R.Harrison, S.J.Counsell and R.V.Nithi, “An Evaluation of
the MOOD set of object oriented metrics”, IEEE transaction,
24(6), 1998.

[2] J.Xu, H.Danny, L.Fernado Capretz, “An Empirical
validation of object oriented design metrics for fault
prediction”, Journal of computer science, 4(7), 2008.

[3] Y.Zhou, H.Leung, “Empirical Analysis of Object Oriented
design metrics for predicting high and low severity faults”,
Journal of software engineering and application, 2012.

[4] C.Neelamegan, Dr.M.Punithavalli, “A survey of Object
Oriented Quality Metrics”, Global journal of computer
science and technology, 9(4), 2009.

[5] R.Harrison,Smaraweera,L.G.Dobie and Lewis, “Comparing
Programming paradigm: An Evaluation of Functional and
Object-oriented programs, Software Engineering Journal,
1996.

[6] Rodiger Lincke, Jones Lundberg, Wilf Lowe, “Comparing
Software Metrics Tools”, ACM ISSTA, Seattle, 2008.

[7] V.L.Basili, L.Briand and W.L.Melo, “A Validation of
object-oriented metrics as Quality Indicators”, IEEE
transaction software engineering, 8(11), 2013.

[8] R.D.Neal: “The validation by measurement theory of
proposed Object-oriented Software Metrics”, Virginia,
Commonwealth University, 1996.

[9] B.F.Abreu, “Design metrics for OO software system”,
ECOOP, Quantative Methods Workshop, 1995.

[10] Ian Sommerville, “Software Engineering”, Pearson
Education, 8th edition, 2008.

[11] M.Lorenz and J.Kidd, “Object-Oriented Software Metrics”,
Prentice Hall, 1996.

Aman Jatain et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1180-1183

www.ijcsit.com 1183

